
CHAPTER

SIX

SHARED VARIABLES

Most of the models and languages we discuss in this book use explicit proc-

esses for the primitive, concurrent-processing object. These systems package the

communications of these processes into some form of message and arrange the

delivery of these messages to the right destinations. But what lies below mes-

sages? Nancy Lynch and Michael Fischer argue that sharing is the foundation

of interprocess communication. They base their Shared Variables model on com-

munication through reading and writing of shared variables. They claim three

major advantages for their approach: (1) Variable sharing is a close re
ection of

computer hardware; (2) The frequency of reading and writing shared variables is

an excellent metric of the complexity of distributed algorithms; and (3) Shared

variables are primitive | all other \realizable" distributed models can be de-

scribed in terms of shared variables. Lynch and Fischer's primary concerns are

the complexity and correctness of distributed algorithms. Their system can be

used to model not only the information-transfer aspects of distribution but also

the protocols of communication.

Processes and Shared Variables

The Shared Variables model has two kinds of objects, processes and shared vari-

ables. Processes compute independently and asynchronously. They communicate

only by reading and writing shared variables. A process that reads a shared vari-

able obtains its value; a process that writes a shared variable changes its value.

A variable may be shared by two or more processes. Figure 6-1 shows the vari-

able sharing of several processes. In the �gure, processes P and Q share variable

57



58 models

w, R and S share variable x, P, Q, and R share variable y, and all four processes

share variable z.

A model based on shared storage would seem to be inappropriate for coor-

dinated computing. After all, the criterion that distinguishes distribution from

mere concurrency is the absence of shared state. Nevertheless, this is a distributed

model. Lynch and Fischer argue its relevance by stating [Lynch 81, p. 19]:

At the most primitive level, something must be shared between two processors for them

to be able to communicate at all. This is usually a wire in which, at the very least, one

process can inject a voltage which the other process can sense. We can think of the wire

as a binary shared variable whose value alternates from time to time between 0 and 1. : : :

setting and sensing correspond to writing and reading the shared variable, respectively.

Thus, shared variables are at the heart of every distributed system.

Shared Variables is an attempt to model distributed systems at the most

primitive level. It explicitly rejects the high-level facilities that programming

languages provide. Operations such as implicit synchronization, clock interrupts,

and message and process queueing are important for building real systems. How-

ever, such facilities are not primitive|they can all be described by a more funda-

mental mechanism, the shared variable. Describing an algorithm without the aid

of such high-level facilities forces the writer to make the algorithm's protocols

explicit; it permits the inherent costs of particular communication patterns to

be quantitatively analyzed. Furthermore, shared variables are a known technol-

ogy|the construction of a system described solely in terms of shared variables

is straightforward.

A typical shared variable in the Lynch-Fischer model stores only a single,

small value. In using this model for analyzing distributed systems, one ought to

be limited to only a few such variables. However, nothing in the system design

precludes modeling a large shared memory using many shared variables.

Each process in the Shared Variables model is a countably-in�nitely-

branching, nondeterminate, Turing-equivalent automaton. We explain the mean-

ing of this phrase later in this section. For the moment, we assume that each

Figure 6-1 Processes and shared variables.



shared variables 59

process is running some high-level language on a machine with an in�nite memory

and an unbounded random-number generator.

Like a Turing machine, each process has an internal state. At each com-

putational step, a Turing machine reads its input tape, writes a value on its

output tape, and enters a new state. Changes in the storage tape re
ect changes

to the Turing machine's state. Similarly, at each computational step a Shared

Variables process selects a shared variable to read, reads that variable, writes a

new value for that variable, and enters a new state. This entire operation is an

atomic action|no other process can access the variable during the update, and

this process cannot access any other variable in determining the update value.

The process of checking the value in a variable and then updating it is called

test-and-set.

Test-and-set allows the computation of an arbitrary function between the

reading of the test and the writing of the set. For example, a process can read a

numeric shared variable, compute its largest factor, and write that value back into

the variable. Computing this factor may be a complex computation. Nevertheless,

no other process can access that shared variable during the update.*

Despite the similarity of names, the Lynch-Fischer test-and-set is a much

more powerful instruction than the standard test-and-set instructions found on

many computers. In conventional computers, reading and writing of storage are

performed on separate cycles. Other processes or interrupts can interleave with

these actions. Some computers combine a limited form of reading and writing

in instructions that perform actions such as \increment this location and skip

the next instruction if the result is zero." Allowing an arbitrary computation

between reading the shared variable and writing the new value may seem too

unrealistic. The Lynch-Fischer test-and-set requires a semaphore or lock on each

variable to keep other processes from accessing it during the computation of the

update.

The full test-and-set instruction is too powerful to faithfully model conven-

tional computers. For such systems we use a subset of the full class of shared

variable processes, the read-write processes. If a read-write process reads a value,

it must write back that same value. If such a process writes a value, both its new

state and the value written must be independent of the value read. That is, in a

single, indivisible step, a read-write process can appear to either read or write a

variable, not both. Hence, every read-write process is a test-and-set process, but

not every test-and-set process is a read-write process.

In the Lynch-Fischer model, processes never fail. More speci�cally, a process

that starts to update a variable �nishes that update. Thus, every process has

a valid response to every possible value it might read from a shared variable.

Furthermore, every shared variable eventually unlocks. Though processes cannot

stop in the middle of updating a shared variable, they can stop between updates.

These restrictions parallel the limits that mutual exclusion problems place on

* However, as this model lacks a notion of time, this use of \during" is somewhat misleading.



60 models

stopping inside a critical region. Just as Dijkstra assumed in his development

of Dekker's solution (Section 3-2) that processes do not stop in critical regions,

Lynch and Fischer assume that processes do not stop while updating.

This model is time-independent. A process cannot refer to the amount of

time it has been waiting for a variable to change. It can only intermittently

check to see whether the variable really has changed|somewhat akin to busy

waiting. Of course, lacking \time," processes do not compute at any particular

speed. One is sure only that a process that has not halted will eventually execute

its next step.

The model's exclusion of time-dependent behavior is both a limitation and

an advantage. Time is important in real systems. For example, clocks and in-

terrupts are fundamental to operating systems. Therefore, relationships such as

mainframe/terminal communications (where the two processes depend on having

similar clock speeds) and time-outs (where a computation can be aborted after

a speci�ed duration) cannot be described in the Shared Variables model. On

the other hand, results based on this model are, in some sense, stronger results

because they do not depend on temporal assumptions.

As we have said, each process in the Lynch-Fischer model is a countably-

in�nitely-branching, nondeterminate, Turing-equivalent automaton. A Turing-

equivalent automaton is a general computing device (Section 1-1). It can com-

pute any function that can be coded in a high-level language like Pascal or

Lisp. A bounded nondeterminate automaton can take each of several paths at a

given choice point. An in�nitely-branching nondeterminate system can also take

several paths. However, it can select an in�nite number of di�erent paths at a

single choice point. A countably-in�nitely-branching automaton is restricted to

having choice points with only a countably in�nite number of choices.* Each of

these extensions allows us some behavior [the computation of some (multivalued)

functions] that the earlier class did not have.

Unbounded nondeterminacy is a mathematically unorthodox assumption.

Most mathematical models of computation that allow nondeterminacy place a �-

nite bound on the branching factor. Lynch and Fischer chose unbounded branch-

ing for their model because they wanted a single process to be computationally

equivalent to a set of processes.

Lynch and Fischer prove two fundemental theorems about concurrent com-

putation (given the assumptions of the model). The �rst is that two asyn-

chronous, determinate automata together can produce in�nitely-branching, non-

deterministic behavior. This is achieved by having the �rst send a message to

the second, counting until it receives a reply. Since the model does not limit the

relative speed of processes, we cannot bound the delay between sending the re-

quest and receiving the answer. However, since the second process will eventually

* A countably in�nite set can be placed in a one-to-one correspondence with the integers.

This is a small in�nite set. Larger in�nite sets include sets such as the real numbers and the

set of all functions from the reals to the reals.



shared variables 61

progress and answer our request, the algorithm always terminates. This varying

delay is e�ectively an unbounded random number and is su�cient to make the

system unbounded and nondeterminate.

The second theorem states that any �nite set of unbounded nondeterminate

processes is equivalent to some single process. This is true because a single process

can simulate the set of processes by interleaving their steps. Given the unbounded

delay between process steps, this theorem would be false if the automata were

not in�nitely-branching nondeterminate.

Lynch and Fischer also give a formal de�nition of what it means for a

distributed algorithm to solve a problem. Their de�nition treats the actions

of a set of processes as a permutation of the actions of the individual proc-

esses. A system solves a problem if every possible permutation yields a solution

state.

Examples

The Shared Variables model is a perspective on distributed computing. Our

examples illustrate the e�ect of this perspective. Models are not programming

languages. Therefore, we cloak the semantics of the Lynch-Fischer model in the

syntax of a programming language. We extend Pascal to describe shared-variable

algorithms with the following conventions: A process that shares an external

variable declares that variable as a shared variable. The declaration can specify

an initial value for the variable. We create processes with a process declaration.

We take liberties with the syntax of const de�nitions and with the evaluation of

expressions in type declarations.

Semaphores As an example of the full test-and-set capability of the Shared

Variables system we model a general semaphore. This semaphore controls a re-

source that can be simultaneously shared by up to ConcurrentUsers di�erent

processes. The semaphore is a shared variable semvar. Process Q executes the P

or V operations on semvar. The brackets �� denote atomic actions. Each process

that uses the semaphore has its own copy of the code for P and V.

process Q;

shared var semvar: integer (initial ConcurrentUsers); - - imported variable

var resourcebusy: boolean (initial false); - - Resourcebusy, a local variable (not

shared) of process Q, is true when

the resource is both sought and

unavailable.

procedure P;

var local semvar: integer;

begin

local semvar := semvar;



62 models

if local semvar = 0 then - - read the shared variable

begin

resourcebusy := true;

semvar := 0 - - write a new value

end

else

begin

resourcebusy := false;

semvar := local semvar � 1 - - write a new value

end

end;

procedure V;

begin

semvar := semvar + 1

end

- - - - - - - - - - - - - - - - - - - - - main program - - - - - - - - - - - - - - - - - - -

begin
...

repeat �P� until not resourcebusy; - - request the resource
...

�V� - - release the resource
...

end - - process Q

We use local procedures P and V to emphasize that the Lynch-Fischer model

allows the reading and the writing of the shared variable to be separated by an

arbitrary computation (except that these procedures cannot access any other

shared variables). Q can inspect its own variable, resourcebusy, to determine if it

has gained access to the resource controlled by the semaphore.

The full test-and-set primitive is unrealistically powerful. We have con�ned

the remaining examples of the Lynch-Fischer model to read-write processes: proc-

esses that cannot both read and update a shared variable in a single atomic step.

Our next example demonstrates that read-write processes su�ce for process

synchronization. We describe a solution by Gary Peterson [Peterson 81] of the

fair mutual-exclusion problem. His solution is simpler than Dekker's algorithm

(Section 3-2). Peterson has the two processes, P and Q, communicate through

three shared variables: turn, p enter, and q enter. Turn is a priority 
ag. In case

of con
ict, turn contains the process identi�er of the next process to enter the

critical region. The processes use p enter and q enter to show readiness to enter

the critical region. Variable turn is read and written by both processes while each



shared variables 63

Figure 6-2 Shared variables for mutual exclusion.

process sets the value of its enter variable and reads the value of its partner's enter

variable. Figure 6-2 shows the information 
ow between the processes through

the shared variables. P enter is true when either P is in its critical region or wants

to enter its critical section. A corresponding program speci�es Q.

process P;

shared var

turn : process id (initial p id); - - imported variables

p enter, q enter : boolean (initial false);

begin

while true do

begin

p enter := true; - - declare intention to enter

turn := q id; - - ensure that Q can enter its critical region when

P's turn is over
while q enter and turn = p id do

skip; - - wait until P's turn or Q is not in its critical

region

p enter := false; - - withdraw intention to enter concurrent region

end

end

Protocols One feature of Shared Variables is that it can model primitive proto-

cols for interprocessor communication. A protocol is an organizational framework

for communication: a mapping between the ordering of symbols and their inter-

pretation. In computer systems, typical protocols specify that certain strings of

bits are to have meanings such as \I want to send a message" and \Do you have



64 models

a free bu�er?" and replies to such requests. Protocols are particularly important

when the communication channel is shared between several logical connections.

In that case, the protocol identi�es and orders the pieces of a message, keeping

it from being scrambled with other messages.

Our next example presents a message transmission protocol that uses a single

shared variable. Lynch and Fischer describe some of the di�culties of shared-

variable communication [Lynch 81, p. 24]:

The way in which processes communicate with other processes and with their environ-

ment is by means of their variables : : : Unlike message-based communication mechanisms,

there is no guarantee that anyone will ever read the value [in a variable], nor is there any

primitive mechanism to inform the writer that the value has been read. (Thus, for mean-

ingful communication to take place, both parties must adhere to previously-agreed-upon

protocols. : : : )

The key idea is that any pattern of communication can be achieved by read-

ing and writing a shared variable according to appropriate protocols. To illustrate

this idea we consider the problem of message communication between two read-

write processes, P and Q. Assume that P and Q share variable pq var that can

store integers between �n and n. P and Q wish to imitate a bidirectional message

transmission system, where messages can be up to message limit words long.

P and Q communicate by obeying the following protocol. P assigns only

positive numbers to pq var; Q only negative numbers. Both processes can set

pq var to 0. The numbers n � 1 and n [respectively �(n � 1) and �n] are the
\message initiation header" (pm header) and the \end of message" (p eom) for

P (respectively, Q). We use the n�2 remaining values for encoding the message.

P stores the number n � 1 (pm header) in pq var to show that it wishes to

send a message. Q responds by writing a 0 (okay to send), indicating readiness

to accept the communication. After seeing the value okay to send, P writes the

body of the message in the variable, one word at a time. After each word, Q

responds with a �1 (q acknowledge). That is, P writes the �rst value in the

message and Q replies with q acknowledge. When P sees the q acknowledge, it

writes the second word and waits for Q's next acknowledgment. This continues

until P has sent the entire message. At that point, P stores p eom in pq var.

Q responds with okay to send. On seeing okay to send, either process can start

another communication by placing its message initiation header into the variable.

P and Q execute the corresponding protocol to send messages from Q to P.

Variable pq var is initially okay to send.

Problems arise when both processes try to write the message initiation

header at about the same time. P and Q must recognize that writing the header

does not guarantee the right to transmit. A process that writes the header and

then reads the header of its partner does not send, but instead accepts the next

message. When a process writes the header, it waits until its partner either ac-

cepts transmission (okay to send) or demands the channel for itself (the partner's

message initiation header).



shared variables 65

We present the program for P. The program for Q is analogous.

const

qm header = �(n�1); - - Q's message header

pm header = n�1; - - P's message header

q eom = �n; - - Q's end of message

p eom = n; - - P's end of message

q acknowledge = �1; - - Q's response to message data

p acknowledge = 1; - - P's response to message data

okay to send = 0;

type message = array [1 .. message limit] of integer;

- - Messages can be up to message limit words long.

process P;

shared var pq var: integer (initial okay to send); - - imported variable

: : : <local declarations> : : :

procedure receive;

var

in : message; - - the message

k : integer; - - the number of the words in the message

begin

if pq var = qm header then

begin

- - Q has signaled that it wants

to send a message.
pq var := okay to send;

k := 0;

while pq var =/ q eom do

begin

- - repeat until Q signals it is

done

while pq var � 0 do skip; - - wait for response from Q

if pq var =/ q eom then

begin

k := k + 1;

in[k] := pq var - - get the value

pq var := p acknowledge;

end

end;

pq var := okay to send; - - Acknowledge that the entire

message has been received.

act(in,k); - - act on the message

end

end; - - receive

procedure send (var out: message; k: integer); - - send a message,

out[1..k]



66 models

var

i : integer;

ready to send : boolean; - - Have we requested communication yet?

begin

ready to send := false;

while not(ready to send) do

begin

while pq var =/ okay to send do receive; - - Q wants to send.

pq var := pm header;

while pq var = pm header do skip; - - waiting for

acknowledgment

if pq var = qm header then receive

else ready to send := true

- - cannot send until

okay to send is in

pq var
end;

for i := 1 to k do

begin

pq var := out[i]; - - write the next word

while pq var =/ q acknowledge do skip - - wait for signal

end;

pq var := p eom; - - specify end of

message

while (pq var =/ okay to send) and

(pq var =/ qm header) do skip

- - wait for

acknowledgment

end; - - send

begin
...

- - the code for P, including occasional checks to see if a message is waiting

and calls to send messages as needed.
...

end - - process P

This example emphasizes the fact that the only way to tell if a value has been

read from a shared variable is to receive an acknowledgment of that reading.

We measure program e�ciency by considering the quantity of a resource

that it uses (proportional to its input) (Section 1.3). For example, the protocol

program uses a shared memory cell that can accommodate 2n di�erent values; the
system writes more than 2k n-bit messages to transmit kn words of information.

These bounds can be improved. For example, Burns [Burns 80a] has shown that

a subtle extension of the work of Cremers and Hibbard [Cremers 79] allows the

variable to be limited to as few as three values. Exercise 6-9 asks for an improved



shared variables 67

Figure 6-3 A long distance communication.

protocol that uses fewer writes to send the same amount of information. The

Lynch-Fischer model is particularly well suited for use in this kind of analysis.

Communication delay Shared variables provide failure-free communication

between processes. Of course, many real world applications are di�cult pre-

cisely because individual messages can become garbled or lost. One technique

for modeling noisy communication between two shared-variable processes is to

use a channel process. Imagine two distant processes, P and Q, that communicate

through the shared variable x (Figure 6-3). Of course, with this arrangement P

and Q have errorless communication. Anything one writes in the shared variable

can be correctly read by the other. To model noisy communication, we introduce

a channel process C that shares variable y with P and variable z with Q (Fig-

ure 6-4). C's task is to take the values written by P in y and to write them into

z for Q, and to take the values written by Q in z and to write them into y for

P. C is programmed to be noisy. That is, now and then it \makes a mistake"|

writes the wrong value for a communication, drops a message, or inserts a spuri-

ous message. C's pattern of misbehavior can model the channel's intended noise

pattern.

We assume that C has a function noise from channel values (integers) to

channel values. Noise(x) is usually x, but sometimes it is something else. The

code for this function re
ects the particular pattern of noise being modeled. The

program for the channel is as follows:

process channel;

shared var y , z: channel value (initial 0); - - imported variables

var yrecent, zrecent: channel value;

begin

yrecent := y;

zrecent := z;

while true do - - using a guarded command

Figure 6-4 A channel process.



68 models

y =/ yrecent !

z := noise(yrecent); yrecent := y; zrecent := z

[]

z =/ zrecent !

y := noise(zrecent); yrecent := y; zrecent := z

[]

y = yrecent and z = zrecent !

skip

end - - channel

Election algorithms One use of the Lynch-Fischer model is to analyze the

complexity of algorithms for distributed systems. In this next example we present

a simple analysis of a distributed algorithm.

A common architecture for small distributed systems is a ring. In a ring,

processes are arranged in a circle. Each process communicates directly with its

left and right neighbors. Figure 6-5 shows a seven-element ring network. Each

process in the ring shares a variable with each of its \next-door neighbors."

Sometimes a ring of processes must establish a chief (king) process. This

process manages some aspect of the general system function. We assume that

each process has a unique positive integer (its rank) and that the process with

the largest rank ought to be the king (Figure 6-6). Process ranks are independent

of the number of processes in the ring and the location of the process in the ring.

These numbers are not necessarily consecutive; the individual processes do not

know a priori how many processes are in the ring.

Figure 6-5 A ring network.



shared variables 69

Figure 6-6 A ring network with ranks.

The ring is not static. Instead, processes enter and leave the ring dynamically.

The logical ring is automatically (through the underlying hardware) patched to

handle changes in the ring's con�guration.

The departure of the king process from the ring requires an election to crown

the new king. An election is an algorithm that determines the process that ought

to be the king by passing messages containing the ranks of the active processes

around the ring. For the sake of simplicity, we assume that no process leaves or

enters the ring during an election.

Our naive election algorithm has each process assign its own number to the

variable shared with its \left" neighbor and read from its \right" shared variable

its right neighbor's rank. Processes forward, from right to left, any rank that is

larger than anyone they have already seen. When a process receives its own rank

back through its right variable, it knows that that value has passed all the way

around the ring, making that process the legitimate chief|the lord of the ring.

The new king process announces its election by circulating the negative of its

rank around the ring. The program for election algorithm is as follows:

process candidate;

shared var left, right: integer (initial 0); - - imported variables

const MyNum = 1729;

function election: boolean; - - returns true if this process is elected king

var best, last: integer;

begin

left := MyNum;



70 models

best := MyNum; - - the best this process has seen so far

while (right � 0) and not (right = MyNum) do

if (right > best) then

begin - - a new, higher rank

last := right;

left := last;

best := last

end;

election := (right = MyNum);

if election

then left := �MyNum

else left := right;

end; - - election
...

- - the rest of process candidate
...

end - - candidate

If there are n processes in the ring, this algorithm may make O(n2) assign-
ments to the shared variable. Figure 6-7 shows an example of an arrangement of

process ranks that can yield this worst case. In the �gure, the ranks are sorted in

decreasing clockwise order. The worst-case behavior happens when each process

sends its value as far as possible to the left without sensing the higher rank on its

right. That is, the lowest ranking process sends its message one step to the left.

Then the second lowest process sends its message two steps left. This contin-

ues until the king process �nally awakens and transmits its rank. This requires

1 + 2 + 3 + � � �+ n = n(n+ 1)=2 messages to be sent.*

This is not the most e�cient possible solution. Hirschberg and Sinclair

[Hirschberg 80] have shown an algorithm that solves the election problem in

at worst O(n log n) writes. Their algorithm relies on writing values that contain

a limit on how far around the ring they can travel. The processes send these

messages around the ring in alternating directions until two messages from the

same source meet.

Continuous display The strongly asynchronous nature of the Shared Variables

model makes the system ideal for modeling Kieburtz and Silberschatz's continu-

ous display problem [Kieburtz 79]. The continuous display problem hypothesizes

a system of two processes, the generator and the display. The system tracks

and displays. The generator continuously discovers the current location of some

moving object, the target, and passes that location to the display process. The

* Our algorithm requires another n writes to circulate the announcement of the election.



shared variables 71

Figure 6-7 The worst case of the election algorithm.

display process uses that value to show the \most current" location of the ob-

ject on a display device. This idea of using the most recently generated value

(and disregarding earlier values) is appropriate for many real systems, such as

tracking systems. Synchronous communication would slow the system down to

the speed of the slower process; separating the two processes by a producer-

consumer bu�er ensures that the stalest data is always the next read. However,

shared memory obtains precisely the desired behavior. The generator repeatedly

writes the current target location in the shared variable; the display just reads

the shared variable's current value.

Perspective

Lynch and Fischer assert that some analysis and correctness problems are best at-

tacked by modeling a set of distributed processes as if they shared a small amount

of common storage. They argue that this model is primitive; that other more

complicated communication mechanisms (such as messages and procedures) can

all be expressed with shared variables.

Lynch and Fischer are concerned with formal programming semantics. Their

work is heavily mathematical (principally the situation calculus over automata,

expressed in predicate logic) and only marginally concerned with programming

practice. The shared-variable concept is a low-level approach. It requires that

every detail of an interaction be explicit. As such, it is good for modeling low-

level activity and for deriving complexity results. The model is an \automata

theory" of distributed computing. However, just as Turing machines are not



72 models

a good basis for sequential programs, shared variables are not an appropriate

foundation for practical coordinated computing.

The techniques that have been used to analyze the time complexity of shared-

variable programs can also be used to analyze of the complexity of other aspects

of programs. For example, Burns et al. [Burns 80b] present an analysis of the

shared space requirements of various algorithms.

PROBLEMS

y 6-1 Extend the election algorithm to allow processes to be added or deleted during the

election. Take particular care to handle the deletion of the king process. Assume that if a

process leaves the ring, the ring is patched around its place.

6-2 How do the solutions to the previous problem change if all processors have (roughly

similar) clocks and failures can be detected through time-outs?

6-3 Does the election program need variable last?

6-4 What is the best case of the naive election algorithm and when does it occur?

6-5 Program a solution to the dining philosophers problem using shared variables.

6-6 Modify the protocol of the message transmission program so that instead of sending an

end-of-message symbol, messages are transmitted with their length.

6-7 Modify the protocol of the message transmission program so that neither processor can

starve, unable to send a message.

6-8 In the message transmission program, why must processes read an okay to send before

beginning message transmission? Why is shared variable pq var initialized to okay to send?

6-9 The protocol program is relatively ine�cient for the number of bits of information that

are written for the size of message transmitted. Improve it.

6-10 Show how the card reader of Chapter 8 can be done using the Lynch-Fischer shared-

variable model.

REFERENCES

[Burns 80a] Burns, J. E., personal communication, 1980.

[Burns 80b] Burns, J. E., P. Jackson, N. A. Lynch, M. J. Fischer, and G. L. Peterson, \Data

Requirements for Implementation of N-Process Mutual Exclusion Using a Single Shared

Variable," JACM, vol. 29, no. 1 (January 1982), pp. 183{205. This paper shows how the

shared-variable model can be used to analyze the space requirements of communication.

[Cremers 79] Cremers, A., and


